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'Preface

This report presents the general and basfc problems of the experimental -
rdentfﬁcatlon with application on wind turb:nes operaz‘zon process

it synthes;zes a part of the work in this topic carried out by the author in order to
prepare h:s PhD with the Technical University Timisoara TUT.

At the same time the report aims to signal the opportunity of the topic to be
- considered at present and fulure Folkecenter projects. The experimental research
on the Folkecénter 500 kW wmd turbine opens a good application field.

The author thanks to Folkecenter for Renewable Energy for the offered Vlsmng
Researcher stage and for the excellent conditions which made possible, beside the
current actswzy with the Folkecenter pro;ects this addmona! work, : '

Folkecenter for Frenewable Energy - : . _
Ydby, Denmark , ) - Cristian Tantareanu
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1. INTRODUCTION

Modelling the behaviour of medium and large wind turbine (WT)
is essential for optimum design and operation control. It is
specific for WT to work in a continuous strong transitory
regime due to the rapid and stochastic variation of the wind
speed. For that reason the model of a WT process should be
particularly detailed.

More than that, in the model of the process should be included -
the wind model too as the wind acts like a stochastic pertur-
bation.

The paper presents in a condensed way an approach on the
experimental identification of WT models: the purposes, the
modern adaptive control concept which assumes on line model-
ling, the basic mathematical technics of the experimental
identification, how is the wind included in the modelling.

Wide attention is paid now on the experimental identification
topic in very different fields. A variety of methods are
developed for the mathematical techniques, especially for the
recursive identification . In the annex a basic approach is
made. '

Some results known in the literature for both analytical and

experimental models for medium and large WT are given in the

chapter 3. Here are also presented the author's softwares for
WT experimental identification and applications on simulated

input data.

The paper is meant as an introduction in the problem and tries,
after giving basic guidance , to identify how a further
experimental identification work could be continued and applied
with the Folkecenter activity on the 500 kW WT pilot.



2. MODELLING A WIND TURBINE . WAYS AND PURPOSES.

The rapld variability of the wind parameters implies a high WT
model in order to make it capable to glve the appropriate
answer. Another particular aspect that rises the complexity of
the model is the constructive elasticity of modern designed WT,
it means more freedom degrees.

The WT modelling is required to simulate specific regimes and
thus avoiding real tests, expensive, long lasting and difficult
to meet. The model helps in optimizing the design of the WT and
of the control equipment. In the operation control process ,
the WT model is used to predict the regime in short term and
thus to optimize it; one follows criteria as reducing mechani-
cal or thermal stresses, maximum energy output, limiting the
output power, minimum cut-in/cut-out maneuvers a.o.

To obtain a WT model two ways are possible:

-analytical identification
-experimental identification

The analytical identification starts from the physical laws of
the process and build the mathematical functions which link the
input with the output. The analytical identification should be
made for every component equipment of a WT. After that one
links that partial models in a global one.

The WI' analytical identification could be extremely difficult
especially to identify the behaviour of the aerodynamlc part ,
the rotor. The complex1ty of the global model is high, making
it improper to be used in real time unless important simplifi-
cations are made.

Even so, the most difficult part is still to come: the analyti-
cal modelling of the real spatial wind speed, all over the
rotor plane . One starts from a punctual known value as mea-
sured by an anemometer, sited usually at some distance from the
WT, in specific terrain conditions.

The experimental identification is a technique trying to
overcome the analytlcal difficulties by approaching the problem
directly and in a global manner. For example if we are inter-
ested to catch the wind speed - power relation, one starts from
a real experimental set of data as measured simultaneously
from the anemometer and from the WT output. By appropriated
mathematical techniques one identifies the transfer function
wind speed-power which gives the best appreach to the real
data. Modern mathematical techniques relay on statistical
methods in order to eliminate the noise influence in the
process and in the measurements.

In this concept the WT process is regarded as a black box with
input (in our example) the wind speed measured punctual by the
anemometer and with output the power. The black box includes,
beside the WT model, the model of the spatial change of the
wind speed between the value measured by the transducer and an



eguivalent constant value in the WT rotor plane. 5

Therefore the model of the WT is seen global and pragmatic,
including the placement of the anemometer and the site wind
flow specific.

The same approach could be made for other single input-single
output (SISO) WT models as:

wind speed-mechanical torque

wind speed-generator winding temperature
rotor speed-power '
yaw angle-power

The models identification could be obtained in real time too
and used for control purposes, predicting the controlled
values.The model obtained on line by experimental identifica-
tion could be corrected permanently taking into account the
last real measurements compared with the predicted ones. It
means a self tuning (or adaptive) control. The general scheme
for such a control is given in fig.1l.
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Fig.1. State control diagram.

This modern adaptive control is implemented now on some British
and German WT units to improve the pitch regqulation /1,2,3,4,
31/.

For stall regqulated machines this control could be addressed
for

other purposes like yaw orientation or variable speed control.

Another application is to predict the wind speed values in
order '

to control the cut-in/cut-out maneuvers. The classical concept
that the control will react according to controlled values
known from already past periods (the persistence concept) leads
generally to some unnecessary additional maneuvers /5/. -



3. APPLICATIONS

3.1. Wind prediction

Several applications of wind prediction methods on real data
are known /12,13,14 /.

The general conclusions were:

-the error predictions depend on the specific site,

-the error predictions are not sensible with the average wind
speed value,

-the optimum order of the Kalman filter is 4 or 5. For orders
greater then 6 the improvements are not important despite the
calculation efforts

-the minimal prediction errors appear for sets of data
averaged on 1 to 5 minutes intervals

-if the data are averaged on more than 1 hour interval the
prediction by Kalman or the auto regressive models is not
efficient. For this prediction intervals, the persistence model
is sufficient.

-optimal parameters for the ARMA model are (1,5): regression
order 1, moving average order 5.

Wind prediction practical results on the optimization of the
cut-in maneuvers strategy for a large WT are shown in the
figures no. 2 and no 3.
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The figure no.2 shows the results for a control strategy
combining an ARMA model prediction with hysteresis. The optimum
compromise between the energy output and the maneuvers number
is reached for a hysteresis of 6..8%.

From the figure 3 one sees that the Kalman prediction control
increases the output energy simultaneous with less starting
maneuvers. The optimum seems to be obtained for a Kalman
prediction combined with a hysteresis value of 7-8%.
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3.2. Windturbines models
3.2.1. RAnalytical models

An advanced model called DUWECS was developed at the

Technical University Delft, Holland /15,16,17,18,19/. One takes
into consideration a flexible, 2 bladed, upwind, variable speed
WT. The resulting equations system is very complex and can not

be used for on line control purposes.

At Strathclyde University more simplified models were adopted
as shown on the figures 4 and 5 /20, 21/.
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Fig.4. Amodel for the aerodynamic part {20/




+ high speed shaft
B

Rotor 1/KHSs
torque
- +
G003 [Ks w1 i-”s () [Hee H >
- + — Grid
1S jug— - L |Pc |

Fig.5. The drive train model /20/

J is the inertia, K the stiffness, and Pc the slope of the
electrical torgue curve,

In this model the punctual measured value of the wind speed is
processed through a spatial filter in order to obtain an
equivalent wind speed value as seen by the rotor. The transfer
function of this filter is:

J2 + bs
G(8) = ==
(/2 + bs f0.55)(1 +s b/ J0,55)
with b TR/V

T 1.2 wind speed variation factor with the rotor height

The transfer function between the load torque and the rotor
torque is:

Mg bl*s + bo
Mrot a3*éa+ a2*51+ al*s + ao
where
bO=KKn2Pc b1=Kl<n2J
LT lg'ug HS

2

ao = n KL%RHSPC
2 2

= —_ +

al KuﬁﬁéJLs tn Ju.) a2z = J, Pc (kls n KHS)

= 2
a2 = :r‘_%j“éxl_‘s + DKy )

Further developments /22/ conducted to a 300 kW WT model as
presented in the figure 6:
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Fig.6. Control model of a 300 kW WT

The v and z inputs are white noise.
The transfer functions are:

—-actuator A = 25.9/(s8+25.9)
17 (s2%+ 2s +2,107

~controller C = == e
s(s+0,163) (s+3,246)%
1,30 (1+0,86%)
-wind model W= e e e e
(s+0,086) (1+0,64s) (1+1, 64s)
2123,38
-drive train+generator D = ------ e e e e g T
st +33,39s® +7566,135% +6421,38 +8090
~ torque transducer T =1/(1+0,02s8)

The aerodynamic gains K and Ky are 8090 and 16 840.
The measured noise intensity M=1.

This model was completed /1/ such that:

-to the wind model was added the aerodynamic perturbation given
by blades in relation with the tower:

V3 = 7350(s+12.66) / (s% + 3s + 160,2)

- the induction lag effect in the rotor wake given by the wind
speed change, the rotor speed change or the pitch angle change



was modelled as:
I(s) = (11,258 + 1)/(7,5s + 1)

A more simplified model /3/ aiming to a control in state space
is:

-y

Fig.7. A simplified WT control mode! /3.

where

actuator 5
1,029%10 s + 2,057*%10

A_ ________________________________________________
sl 4,85%102s%+ 1,005%10%s%+ 1,047*10%s + 2,057%10°

induction lag I = (1+11,25s)/(1+7,5s)
measurement noise intensity M = 1
gain K = 8090
0,282
drive traintgenerator D = -—-————————mmmemmmo
s+ 0,8064 s + 10,745

Both stochastic inputs are white noise.

Another approach to model a WT in the state space is made by
E.A. Bossany /23/.

3.2.2. Experimental identification’

There are few references regarding experimental identification
work on WT.

On the MODOA WT- 200 kW, an experimental identification was
carried out based on correlation techniques /27/.

In the last two years experimental identification researches
are done on the UNIVEX WT in Germany. UNIVEX has a 16 diameter



rotor and could operate in various regimes : fixed or variable
speed, teetered or rigid hub, blades with rigid joins or with

flexible ones, up-wind or down-wind rotor.

On this unit one verifies the analytical model DUWEC developed
at Technical University Delft /28/.

The transfer function between the low speed shaft torque and
‘the pitch angle was identified . The identified model has a
Box-Jenkins structure and the optimum order is 5 for the
determinist part and 7 for the stochastic (moving average)
part.

3.3. Identification softwares

In this part one presents the application softwares developed
by the author /30/.

3.3.1. The elaborated programmes

Some calculation programmes for experimental identification
were developed by the author.

The programme CORRID permits a simple statistical processing of
the power and wind speed data series. It gives the average, the

sample variance ,the auto-correlation ann cross-correlation

coefficients and functions of two data series (wind speed and
power). The programme solves the Wiener Hopf matricial equa-
tion for maximum 15 time values of the unit impulse response.

The programme LSQOFF uses the ordinary off-line least squares
estimation method with variants of weighted LSQ and MARKOV
weighted LSQ.Depending on the RAM computer capacity the
programme permits the processing of series up to 1000 data.

The programme RECLSQ performs an ordinary recursive LSQ data
processing. It includes also the weighting possibilities with
the inverse of the regression equation covariance or with a
forgetting factor.

Matricial operations facilities are provided by a standard
TurboPascal mathematical library. The programmes use a graphic
TurboPascal library.

3.3.2.Programmes applications on simulated data

The programmes were first tested in order to assure their
reliability on simpler set data and comparative with test
examples given in literature. .



After that a study on simulated data was performed.

To simulate an artificial set of "wind speed - power" data,
real wind speed data series collected at Rutherford Appleton
Laboratory UK test site were used. The wind speed values were
sampled at every 2 seconds. The correspondent power data
series was simulated starting from the real wind speed data
series using a simple linear autoregressive exogenous model of
second order for the dependence between power and the wind
speed:

p(t)

12-

b2*w{t-2) + a2*p(t-2) + bl*w(t-1l) + al*p(t-1) +bo*w(t)
+e(t) ’

were p, dJgeherated power, kW
w, wind speed,m/s
e , Gaussian error,kW

We considered here wind speed like an input.

The first 5 terms of the model form the deterministic part of
the output power. This part we try to find through identifica-
tion techniques from the perturbed power ocutput. The noise "e"
was simulated with :

e(t) = o V(-2 1n v1) cos (2R y2)

were yl and y2 are independent random numbers from a uniform
distribution on the interval (0,1}. The noise series has the
standard deviation ¢ and zero mean.

In this way , "wind speed-power" data series were created with
different standard deviation noise included in the power
value ; two sets of model parameters were considered:

b2 a2 bl al b0
autoregress. 1 0.0 -2 0.7 4
regressive 2 0.0 6 0.0 3

The first set is a strong autoregressive one with an
important (al) dependence from the previous output (power). The
second set creates a regressive model, thus the power are to be
dependent only from the wind speed. These two parameter sets
were especially choséen to get evidence of the difficulties
induced, in the first case, by the noise correlation with the
measurements vector. The wind speed and the deterministicpower
output evolutions for the regressive and autoregressive model
are shown in figures 8 and 9.

The standard deviation of the power noise is considered
parametrical in the 1large range 1....40 kW. Figures 10 and 11
show examples of simulated perturbed power data with noise with
standard deviation o¢ = 20 kW.

A graphic comparison between the nod-perturbed power data
series, the noise perturbed power data series and the estimated
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power data series are shown following.

Figure 12 presents the estimated autoregressive power data
obtained with the ordinary off-line least sguares method
(LSQOFF programme). The power data series predicted from the
perturbed data are close to the non-perturbed data . Due to
the correlation between the noise and the measurements vector,
less acceptable deviations will appear at more increased
noise perturbations then the actual considered o = 20 KkW.

In figure 13 one can see that for the regressive model it is
possible to extract the non-perturbed data series from much
higher perturbations.

More important for practical control applications is the
recursive algorithm, which rises also the problem of con-
vergence.

The recursive estimated autoregressive power , after approxima-
tely 110 steps (220 sec), is acceptable close to the real
power (figure 14).

The regressive model reacts better (in approximately 90 steps)
then the recursive algorithm as could be seen in figure 15.

Regarding the parameters convergence , the autoregressive model
parameters could not converge to their real value due to the
mentioned correlation of the noise with the measurement vector.
The Gaussian noise imposes an autoregressive coefficient al
near to zero. Only the b0 wind speed coefficient converges to
the real value (b0=4) (figure 16). It is obviously necessary
to use in this case more elaborated estimation techniques then
the ordinary LSQ, as the variable instrumentals algorithm etc.

For the regressive model (figure 17) the parameters do con-
verge to their real values but extremely slow. Here more
elaborated algorithms to improve convergence should be employed
too.

The conclusions of this first tests are that the basic ordinary
off line and recursive LSQ methods give promising results in
wind turbines power data estimation but further refinements
should be developed in order to assure and improve the al-
gorithm convergence.

15-
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4. CONCLUSIONS 91~

-modelling the WT process of power production from wind by
experlmental identification (using an on-line data processing)
is most suitable for control purposes (adaptive control).

-in the process model should be included the wind model as the
wind speed acts as a stochastic perturbation. The wind speed
model could help, giving adequate prediction, to the optimiza-
tion of the cut-in/cut-out maneuvers too.

-=WT control based on line experimental identification could be
used, depending on the WT type and control strategy, with pitch
angle , rotor speed or yaw angle regulation.

~for the stall-regulated 500 kW Folkecenter WT an adaptive
control could be used for yaw regulation and optimization of
the cut-in/cut-out maneuvers.

~the experimental data collected in the operation of the 5co0 kW
WT will provide the input data for an experimental identifica-
tion of the process model. This model could be used further in
simulating WT limit regimes.

-the incipient calculation programmes for experimental WT
identification presented in the final chapter give promlslng
results. The programmes will have further improvements in order
to obtain more performing algorithms.
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ANNEX 24~

1. EXPERIMENTAL IDENTIFICATION TECHNIQUES

l.1.Identification based on corrélation functions

One calculates the cross correlation function r,, (k) between
the input u(t) and the out put y(t) and the autocorrelation
function n,, (t) of the output.

Using the Wiener-Hopf equation in discrete time version :
r‘_,,j (k) = Z hj * ruu(k—j)

the method gives the unit-impulse response h(t); applying
further the Laplace transform we obtain the transfer function.

In the frequency domain the Wiener-Hopf equation is
H(jw) = Suy (w) / Suu(w)

where Suy , cross-spectral density
Suu , power spectral density

1.2. Estimation techniques

This techniques estimate, based on the statistic theory, the
parameters of the model which give the best fitted outputs
comparing with the real ones. The estimation criteria minimize
of a error function using least squares or maximum-likelihood
techniques.

For on line estimation one uses recursive algorithms to obtain
the input-output model or the state model (Kalman filter)

/6,7,8,9/.

The structure of the model should be apriori chosen (based for
example on information obtained from a preliminary analytical
identification).

The input-output model

The most general structure of a black-box model is (fig.Al):
B(q) C(q) .
A(g)*y(t) = ——==-=-- u(t) +  omemm- z(t)
F(q) D(q)
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y(t) the output

u(t) the input

z(t) noise

A,B,C,D,E,F polynoms with the backward operator (.

C/D

]
__m.. - v

Fig. A1. The general input-output model

The particular models are:

Polynonms Model name Symbol
Autoregressive AR
B Impulse response ‘ FIR
A,B Autoregressive exogenous ARX
A,B,C Autoregr. moving average exogenous ARMAX
A,C Autoregressive moving average ARMA
A,B,D Repetitive autoreg. exogenous ARARX
A,B,C,D Rep. ‘autoreg. moving av. exogenous ARARMAX
B,F Output QE
B,F,C,D Box Jenkins BJ
If the model is written in the formY¥ =8 & + %
where

Y, output wvector

, Previous input-output data matrix
, estimated parameters vector

, hoise vector

6O W

the recursive (most used) set of equations for LSQ (Least
SQuares) method is:
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P(k)= ——zg====nm- -
(sT (k) s(k)) |
B(k+1) = O(k) + M(k+1) [Y(k+1l) - s (k+1) B(K)]
M(k+1) = P(k) s(k+1l) [ a + s (k+1) P(k) s(k+1)]"*
@ = 0.5...1.0
P(k+1) = [I - M(k+1) s' (k+1)] P(k)

Initial values for 6 and P are necessary.

There is also a LSQ method in off line algorithm; The LSQ
method is known in ordinary and weighted variants. One of the
weighted variants refers to Markov estimate where the weight-
ning matrix R 1is formed with the inverse of the covariance of
the regression equation error.

The INSTRUMENTAL VARIABLES method is a modified LSQ method in
which the measured outputs are replaced with determinist
values, uncorrelated with the error. A common idea is to use
for this purpose the model parameters obtained following an
ordinary LSQ.

The Kalman filter

The parameters are regarded as the states of the system and the
state equations are used.

One starts from the known state equations:

X (k+1)
Y (k)

A X(k) + B U(k) + v(k)
¢ X(k) + z(k)

The recursive algorithm is:

the estimate state: _ -
X(k+1) = AX(k) +BU(k) + K(k+1)[Y(k+1)-CAX(k)-CBU(K) ]

the gain matrix: K(k+1) = Q(k+1)Cc [co(k+1)C' + Rz 17!

~the posteriori covariance P(k) cov [X(k)]

the apriori covariance P(k+1) [1-K(k+1)C] O(k+1)
Q(k+l) = AP(K)A' + Rv

The process and the filter are shown in the figure A2.
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v(k) z(k)
U(k) x(k+1) x(k) ' Y(k)
A

K(k+1)| :
(k+1)

— - Delay

ég.l 2o b

A

Fig.A2. The process in state terms and the Kalman fiiter

2.MODELLING THE WIND

The wind speed imposes the stochastic character in modelling a
WT process. To consider the wind speed like a white noise
perturbation is not realistic so it is necessary to find an
appropriate model for the wind too.

The prediction of the wind speed through a proper model serves,
except to WT process modelling, to the optimization of start,
cut-in, cut-out and stop maneuvers. The maneuvers cptimization
is particularly useful for WT working with diesel units.

The best strategy is based on wind prediction and on a
"hysteresis" effect on the operational diagram of the WT.
Through hysteresis we understand different imposed values for
the wind speed at the limits of the operational domain depen-
ding of the WT condition. For example the cut-in wind speed is
fixed at 5.5 m/s and the cut-out speed at 4.7 m/s.

The wind speed prediction is hardly possible od seconds and
minutes scale through analytical models. Analytical models
could be useful only to simulate sets of wind speed values for
tests and validation of the design work /10/. A known technique
'is to generate sets values with an imposed spectral density Se
(Shinozuka method) /11/: i
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where A, = [
Aw = (w, - wp )/N, W, and wg upper and lower
frequency limits

Wiy =W o+ (k-1/2) A w ;k=1..N, N-frequencies number
Wy = Wy, + £ w, Aw << & w
Sw = awy2 ... AwY/2 stochastic, uniform
distribution
= 0...27 stochastic, uniform distribution

For a spectral density function specific to the wind speed one
could choose the Kaimal spectrum:

So(f) = -=—= oo 5
2 (1L + 1.5 fl1/v )'é

where ¢ is the variance, 1 the longitudinal length scale, v the
mean wind speed and f the frequency.

Another model is the Vaicatis spectrum

7 [1+ (Fw /\7’#)9“
where:
K , surface flow coefficient (K = 0.004)
F ,.turbulence dependent parameter{ F = 600 m)

For the on-line control necessities only the experimental
identification of the wind speed ig possible.

Through the AR or ARMA models the next wind speed values are
predicted based od the values measured until the prediction
moment .

Usually one applies the Kalman filter for the estimation of the
vector 0 parameters, let say for the AR model:

V =586+ Z.

The recursive set of equations is:

- + -l
Q(k+1) s8{k) [s(k)*Q(k+l) S8 + Rv ]

K(k+1) =
8(k+1l) = B(k) + K(k+1) [ V(k+1l) - S(k)*o(k)]
P(k+1l) = [1-K(k+1)*8{k)]*0O(k+1)

O(k+1) = P{(k) +Ro

Rv cov [estimated wind speed values]

o

Ro cov [&(k+l)-e(k)]
As initial wvalues one takes:

Rv = Vtip/10 where Vtip is the commodn values of measured wind

speeds
Ro = 0,01*1
2= [0,7 O0,3/N.... 0,3/N] and e (0} = 1

N, filter order




With the Kalman filter, several improvements are possible, for 29~
example in what concerns the evaluation of the noise covariance

Rz; this covariance is taken as the average of the previous

predicted errors. Further, the covariance Rz is pondered by

increasing the influence of the last residues, considering a
weightning parameter:

o 2
R, = (M-1)R, /M + €, /M

A good value for M is around 15 /12/ .

The most simple prediction model is the persistence model. Here
the predicted wind speed value is identic with the present
measured one. The persistence model is used as reference in
comparison with other more elaborated prediction models.



